Complexity of VC-classes of sequences with long repetitive runs
نویسنده
چکیده
The Vapnik-Chervonenkis (VC) dimension (also known as the trace number) and the Sauer-Shelah lemma have found applications in numerous areas including set theory, combinatorial geometry, graph theory and statistical learning theory. Estimation of the complexity of discrete structures associated with the search space of algorithms often amounts to estimating the cardinality of a simpler class which is effectively induced by some restrictive property of the search. In this paper we study the complexity of Boolean-function classes of finite VC-dimension which satisfy a local ‘smoothness’ property expressed as having long runs of repeated values. As in Sauer’s lemma, a bound is obtained on the cardinality of such classes.
منابع مشابه
Finding Exact and Solo LTR-Retrotransposons in Biological Sequences Using SVM
Finding repetitive subsequences in genome is a challengeable problem in bioinformatics research area. A lot of approaches have been proposed to solve the problem, which could be divided to library base and de novo methods. The library base methods use predetermined repetitive genome’s subsequences, where library-less methods attempt to discover repetitive subsequences by analytical approach...
متن کاملOn the VC-dimension and Boolean functions with long runs
The Vapnik-Chervonenkis (VC) dimension and the Sauer-Shelah lemma have found applications in numerous areas including set theory, combinatorial geometry, graph theory and statistical learning theory. Estimation of the complexity of discrete structures associated with the search space of algorithms often amounts to estimating the cardinality of a simpler class which is effectively induced by som...
متن کاملBoolean Functions: Cryptography and Applications
Abstract. The Vapnik-Chervonenkis (VC) dimension and the Sauer-Shelah lemma have found applications in numerous areas including set theory, combinatorial geometry, graph theory and statistical learning theory. Estimation of the complexity of discrete structures associated with the search space of algorithms often amounts to estimating the cardinality of a simpler class which is effectively indu...
متن کاملMining Biological Repetitive Sequences Using Support Vector Machines and Fuzzy SVM
Structural repetitive subsequences are most important portion of biological sequences, which play crucial roles on corresponding sequence’s fold and functionality. Biggest class of the repetitive subsequences is “Transposable Elements” which has its own sub-classes upon contexts’ structures. Many researches have been performed to criticality determine the structure and function of repetitiv...
متن کاملRecursive Teaching Dimension, Learning Complexity, and Maximum Classes
This paper is concerned with the combinatorial structure of concept classes that can be learned from a small number of examples. We show that the recently introduced notion of recursive teaching dimension (RTD, reflecting the complexity of teaching a concept class) is a relevant parameter in this context. Comparing the RTD to self-directed learning, we establish new lower bounds on the query co...
متن کامل